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Abstract

Lattice Boltzmann equations using multiple relaxation times are intended to be more stable than those using a single

relaxation time. The additional relaxation times may be adjusted to suppress non-hydrodynamic modes that do not

appear directly in the continuum equations, but may contribute to instabilities on the grid scale. If these relaxation

times are fixed in lattice units, as in previous work, solutions computed on a given lattice are found to diverge in the

incompressible (small Mach number) limit. This non-existence of an incompressible limit is analysed for an inclined one

dimensional jet. An incompressible limit does exist if the non-hydrodynamic relaxation times are not fixed, but scaled

by the Mach number in the same way as the hydrodynamic relaxation time that determines the viscosity.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

Methods based on lattice Boltzmann equations (LBE) are a promising alternative to conventional nu-

merical methods for simulating fluid flows [9,32]. Using a velocity-space truncation of the Boltzmann

equation from the kinetic theory of gases [6,7,18], lattice Boltzmann methods lead to linear, constant co-

efficient hyperbolic systems with non-linear source terms. Almost all lattice Boltzmann equations simulate

compressible fluids with some finite sound speed cs. However, the computed solutions are expected to

converge towards an incompressible limit when the fluid speed juj is sufficiently small compared with cs,
i.e. as the Mach number Ma ¼ juj=cs tends to zero. Most recent work with lattice Boltzmann equations

follows Chen et al. [8] and Qian et al. [29] in employing the Bhatnagar–Gross–Krook (BGK) collision

operator [5], for which every variable relaxes towards equilibrium with the same timescale s. The BGK

approximation was originally seen as a simplification over previous lattice Boltzmann equations using

first linearized forms of binary collision operators originating in lattice gas cellular automata, and then

general linear operators constrained by symmetry and conservation properties [4,23,24]. These historical
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developments have recently been reviewed by Succi et al. [33]. Lallemand and Luo [25] found that some

more complicated collision operators improve stability at high Reynolds numbers compared with the BGK

collision operator. In this paper we show that incompressible limits do not exist for lattice Boltzmann

equations with these collision operators, unless they are modified to make every timescale proportional to

the Mach number.

The Boltzmann equation for a discrete velocity space with the BGK collision operator may be written as

otfi þ ni � rfi ¼ � 1

s
ðfi � f ð0Þ

i Þ; ð1Þ

where the distribution functions fi, equilibrium f ð0Þ
i , lattice vectors ni, and other variables are defined in

detail below. For suitable choices of the ni and f ð0Þ
i , solutions of (1) may be shown to simulate the

Navier–Stokes equations with kinematic viscosity m proportional to s. Eq. (1) is sometimes called a

discrete Boltzmann equation. It is usually implemented computationally as the fully discrete system, or

lattice Boltzmann equation,

f iðxþ niDt; t þ DtÞ � f iðx; tÞ ¼ � Dt
sþ Dt=2

ðf iðx; tÞ � f ð0Þ
i ðx; tÞÞ; ð2Þ

for the modified distribution functions f i defined below, which is a second order accurate approximation to

(1) in both space and time. For spatially uniform solutions, (2) may be rearranged into the form

ðf iðt þ DtÞ � f ð0Þ
i Þ ¼ � 1� 2s=Dt

1þ 2s=Dt

� �
ðf iðtÞ � f ð0Þ

i Þ: ð3Þ

The scheme (2) is typically used with s � Dt to attain high grid Reynolds numbers, for which the coefficient

c ¼ �ð1� 2s=DtÞ=ð1þ 2s=DtÞ in (3) is close to �1. In other words, for small s the discrete variables f i are
over relaxed by an amount close to the linear stability boundary, rather than driven rapidly towards

equilibrium as in the continuum system (1). In other words, the non-equilibrium parts of the distribution

functions are rapidly oscillating but only slowly decaying. This is the source of the instabilities that restrict

the maximum feasible Reynolds number for a given lattice.

To ensure isotropy, most lattice Boltzmann equations include more variables than appear in the hy-

drodynamic equations that they simulate. For example, the most common two-dimensional lattice Boltz-

mann equation [29] includes nine distribution functions, while only six independent variables are necessary

to recover the two-dimensional Navier–Stokes equations. These six variables are the scalar density q, the
velocity u, and the symmetric momentum flux tensor P. The three extra variables are associated with non-

hydrodynamic or ‘‘ghost’’ variables [3,4,12] that have no effect on the intended hydrodynamic behavior at

large spatial scales, but may dominate at the smallest permitted scales comparable with the computational

lattice [12].

Lallemand and Luo [25] proposed using a more complicated collision operator that over relaxes only

those combinations of the fi that contribute to the momentum flux P, and hence to the viscous stress, while

damping the three non-hydrodynamic combinations that do not appear in the Navier–Stokes equations.

This modification might be expected to improve stability for a given Reynolds number, and was extended to
three dimensions by d�Humi�eeres et al. [14]. Lallemand and Luo [25] used a non-hydrodynamic relaxation

time sg slightly larger that Dt=2, while Higuera et al. [24] and Succi [32] recommended choosing sg ¼ Dt=2,
for which c ¼ 0 in (3), to maximally damp the non-hydrodynamic variables. The latter is equivalent to

McNamara et al.�s [27] approach of setting the non-hydrodynamic modes to zero at each lattice point after

each timestep.

The potential gains available from using a multiple relaxation time (MRT) collision operator to damp

non-hydrodynamic modes are illustrated by the solutions shown in Fig. 1. The four subplots show the



Fig. 1. Vorticity during the roll up of a perturbed doubly periodic shear layer at Re¼ 30,000. For this high value of the Reynolds

number, the BGK simulation on a 1282 grid develops grid scale instabilities leading to ‘‘blow up’’ before t ¼ 1:0, while the BGK

simulation on a 2562 grid forms spurious vortices of the kind investigated by Minion and Brown [28]. The 1282 grid simulation using a

multiple relaxation time (MRT) collision operator with sg ¼ Dt=2 compares more favorably with the 5122 grid BGK simulation.

Although the shear layers have been thickened by the coarse grid, this 1282 MRT simulation is stable and lacks spurious vorticies.
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results of simulating the roll-up of two antiparallel shear layers through a Kelvin–Helmholtz instability, as

considered by Minion and Brown [28] (see Section 5). The initial conditions were given by Eq. (32) below

with j ¼ 80, d ¼ 0:05. The Reynolds number was Re¼ 30,000, and the Mach number was

Ma ¼
ffiffiffi
3

p
=25 � 0:07. Using the BGK collision operator, the simulation on a 1282 lattice becomes unstable

and ‘‘blows up’’ before t ¼ 1:0. On a 2562 lattice the BGK simulation remains stable, but develops two

spurious vortices of the kind investigated by Minion and Brown [28]. By contrast, the simulation on a

coarse 1282 grid using a multiple relaxation time collision operator with sg ¼ Dt=2 compares favorably with
the well resolved 5122 solution that uses the BGK collision operator. Although the shear layers have been

thickened by the coarse grid, the 1282 MRT solution is stable and lacks spurious vorticies. Similarly, Dellar

[11] found that enhancing the bulk viscosity while leaving the non-hydrodynamic modes unchanged could

suppress spurious vortex formation.

In this paper we show that solutions computed by lattice Boltzmann equations that damp non-hydro-

dynamic modes in this way, with timescales that are fixed multiples of Dt, do not converge to an incom-

pressible limit as Ma ! 0. Instead, the solutions on a fixed lattice diverge as OðMa�1Þ in the small Mach

number limit. This observation, originally based on numerical experiments, is confirmed by theoretical
analysis of a linearized problem. It applies not just to the usual isothermal lattice Boltzmann equation, but

also to an ‘‘incompressible’’ modification [20,35], because the two equations coincide when linearized

around a uniform rest state. The difficulty arises from the use of non-hydrodynamic relaxation times that
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are fixed in lattice units, as employed by Lallemand and Luo [25] and d�Humi�eeres et al. [14], and may be

avoided by scaling every relaxation time with the Mach number in the same way as the stress relaxation

time, sP ¼
ffiffiffi
3

p
NMa=Re in lattice units. In outline, the details being given in Section 7, a lattice Boltzmann

scheme requires OðMa�1Þ timesteps to reach a fixed macroscopic time, as determined in terms of an eddy

turnover time for instance. Thus, the eigenmodes of the linearized system decay in proportion to

ð1�OðsÞÞ1=Ma
, and this expression attains a non-zero limit only if s ¼ OðMaÞ as Ma ! 0. In other words,

the correct incompressible limit exists if the non-hydrodynamic modes are assigned a fixed Reynolds

number Rg, instead of an explicit relaxation time. This Reynolds number may differ from the usual hy-
drodynamic Reynolds number related to the shear viscosity, but determines the non-hydrodynamic re-

laxation time as a function of Reynolds number, Mach number, and spatial resolution by the same formula

that relates the stress relaxation time to the usual Reynolds number.

The above all applies to a fixed lattice. The divergence at small Mach numbers may be suppressed by

suitably refining the lattice as the Mach number decreases. The error is proportional to Ma�1N�3, where N
is the number of lattice points per unit interval, and so may be made small by increasing N . However, this

soon becomes very expensive because the computational work is proportional to N ðDþ1ÞMa�1 in D spatial

dimensions. Thus, it is common to test a scheme by separately verifying spatial convergence at fixed Mach
number, and Mach number convergence on a fixed lattice; except the latter limit does not exist for the

proposed MRT lattice Boltzmann equations.
2. Lattice Boltzmann hydrodynamics

In the lattice Boltzmann approach to hydrodynamics, macroscopic variables like the fluid density q and

velocity u are expressed as moments of a discrete set of distribution functions fiðx; tÞ,

q ¼
Xn
i¼0

fi; qu ¼
Xn
i¼0

nifi; P ¼
Xn
i¼0

ninifi; ð4Þ

where n0; . . . ; nn are a discrete set of particle velocities associated with the fi.
These distribution functions evolve according to the discrete Boltzmann equation,

otfi þ ni � rfi ¼ �Xijðfj � f ð0Þ
j Þ; for i ¼ 0; . . . ; n; ð5Þ

with an implied summation over the repeated index j. The collision matrix Xij and equilibrium distributions

f ð0Þ
j must be chosen so as to recover Navier–Stokes behavior for the macroscopic variables in a slowly

varying limit. In particular, the right-hand side of (5) should conserve mass and momentum, in the sense

that [4,33]

Xn
i¼0

Xijðfj � f ð0Þ
j Þ ¼ 0;

Xn
i¼0

niXijðfj � f ð0Þ
j Þ ¼ 0: ð6Þ

Moreover, Xij should only depend on the angle between the two particle velocities ni and nj to ensure

isotropy [4,16,24,32]. The commonly employed Bhatnagar–Gross–Krook (BGK) approximation [5] takes

Xij ¼
1

s
dij; ð7Þ

so that every fi relaxes towards its equilibrium value f ð0Þ
i with the same timescale s.

The Chapman–Enskog expansion [7,18,34] seeks slowly varying solutions to (5) by inserting a formal

parameter 1=� in front of the collision operator right-hand side,
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otfi þ ni � rfi ¼ � 1

�
Xijðfj � f ð0Þ

j Þ; for i ¼ 0; . . . ; n; ð8Þ

so that the slowly varying limit corresponds to � ! 0. The Chapman–Enskog expansion is a multiple scales

expansion of both f and t, but not x, in powers of �,

fi ¼ f ð0Þ
i þ �f ð1Þ

i þ �2f ð2Þ
i þ � � � ; ot ¼ ot0 þ �ot1 þ � � � ; ð9Þ

subject to the solvability conditions

Xn
i¼0

f ðmÞ
i ¼

Xn
i¼0

nif
ðmÞ
i ¼ 0; for m ¼ 1; 2; . . . : ð10Þ

Substituting the expansions (9) into (5), collecting terms at each order, and then taking moments we obtain

macroscopic mass and momentum conservation equations in the form

otqþr � ðquÞ ¼ 0; otðquÞ þ r � ðPð0Þ þ �Pð1Þ þ � � �Þ ¼ 0; ð11Þ

where PðnÞ ¼
Pn

i¼0 ninif
ðnÞ
i . The right-hand sides vanish in (11), and q and u require no superscripts, by

virtue of the solvability conditions in (10).

To reproduce the compressible Euler equations, the first few moments of the equilibria f ð0Þ
i must be

Xn
i¼0

f ð0Þ
i ¼ q;

Xn
i¼0

nif
ð0Þ
i ¼ qu; Pð0Þ ¼

Xn
i¼0

ninif
ð0Þ
i ¼ hqIþ quu; ð12Þ

where I denotes the identity tensor. The equation of state is thus p ¼ hq, where p is the pressure and h the

temperature. The most common lattice Boltzmann equation simulates an isothermal (constant h) fluid by

using nine particle velocities arranged on a square lattice in two dimensions, as illustrated in Fig. 2. The
equilibrium distributions are given by [9,21,29]

f ð0Þ
i ¼ wiq 1

�
þ 3ni � uþ

9

2
ðni � uÞ

2 � 3

2
u2
�
; ð13Þ

in units where the (constant) temperature h ¼ 1=3, and the components of the particle speeds ni take the
integer values f�1; 0; 1g. The weight factors wi are
Fig. 2. The nine particle velocities ni in the 2D square lattice. In lattice units jn1j ¼ 1, and jn5j ¼
ffiffiffi
2

p
.
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wi ¼
4=9; i ¼ 0;
1=9; i ¼ 1; 2; 3; 4;
1=36; i ¼ 5; 6; 7; 8:

8<
: ð14Þ

The Navier–Stokes viscous stress is determined by Pð1Þ, which may be evaluated from the evolution

equation for P,

otPþr �
Xn
i¼0

nininifi

 !
¼ � 1

�

Xn
i¼0

niniXijðfj � f ð0Þ
j Þ; ð15Þ

obtained by applying
Pn

i¼0 nini to (5). At leading order in � this becomes

ot0P
ð0Þ þ r �

Xn
i¼0

nininif
ð0Þ
i

 !
¼ �

Xn
i¼0

niniXijf
ð1Þ
j : ð16Þ

The multiple scales expansion of the time derivative in (9) enables us to replace otP
ð0Þ by ot0P

ð0Þ to sufficient

accuracy, and the latter expression may be evaluated in terms of the known quantities ot0q and ot0ðquÞ
computed from the leading order terms in (11). The left-hand side of (16) then simplifies to
�hq½ruþ ðruÞT�, which is a Newtonian viscous stress. Thus, the collision matrix Xij must be constrained

so that the right-hand side of (16) simplifies to �s�1
P

Pn
i¼0 ninif

ð1Þ
j ¼ �s�1

P Pð1Þ. The dynamic viscosity l ¼ qm
is related to the timescale sP by l ¼ sPhq.

2.1. Incompressible lattice Boltzmann model

The most common lattice Boltzmann equation, with equilibria given by (13), solves the compressible,

isothermal Navier–Stokes equations in the form

otqþr � ðquÞ ¼ 0; ð17aÞ
otðquÞ þ r � ðquuþ c2sqIÞ ¼ r � SþOðMa3=ReÞ: ð17bÞ

The equation of state is p ¼ c2sq, with constant sound speed cs ¼ h1=2. The viscous stress S ¼ l½ruþ ðruÞT�
is Newtonian, with shear viscosity l and a non-zero bulk viscosity [11]. At low Mach numbers,

Ma ¼ juj=cs � 1, solutions of (17) approximate solutions of the incompressible (q ¼ q0 is constant) Na-

vier–Stokes equations with error OðMa2Þ.
Zou et al. [35] and He and Luo [20] proposed the alternative equilibria

f ð0Þ
i ¼ wi q

�
þ q0 3ni � u

�
þ 9

2
ðni � uÞ

2 � 3

2
u2
��

; ð18Þ

for which solutions of the lattice Boltzmann equation approximate the macroscopic equations [20]

c�2
s otP þr � u ¼ 0; ð19aÞ
otuþ u � ru ¼ �rP þ mr2uþOðMa3Þ; ð19bÞ

where P ¼ c2sq=q0 is the pressure, and m ¼ l=q0 the kinematic viscosity. Steady solutions of (19) approxi-

mate steady solutions of the incompressible Navier–Stokes equations with OðMa3Þ error, one order in

Mach number better than the usual isothermal lattice Boltzmann equation [20]. However, for unsteady

flows the compressibility error remains OðMa2Þ, because the difference between the two sets of equilibria in
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(13) and (18) is only OðMa3Þ, since q ¼ q0 þOðMa2Þ and u ¼ OðMaÞ. In the numerical experiments re-

ported below, the density variations are sufficiently small that there is very little difference between the two

schemes. In fact, the two schemes coincide exactly when linearized around a spatially uniform rest state as

in Sections 6 and 7.
3. Multiple relaxation times

The collision matrix Xij appearing in (5) must satisfy many constraints in order to reproduce the iso-

tropic Navier–Stokes equations [4,16,24,33]. The easiest way to specify Xij is to transform from the fi to an

alternative set of variables, including the hydrodynamic variables q, u, and P, that should be eigenvectors

of the collision matrix. Using the same variables as the author�s earlier paper [12], we write

fi ¼ wi q

�
þ 1

h
ðquÞ � ni þ

1

2h2
ðP� hqIÞ : ðnini � hIÞ

�
þ wigi

1

4
N

�
þ 3

8
ni �J

�
; ð20Þ

where h ¼ 1=3 in lattice units, and gi ¼ ð1;�2;�2;�2;�2; 4; 4; 4; 4ÞT. The two ‘‘ghost variables’’ N and J
are given by the moments

N ¼
X8
i¼0

gifi; J ¼
X8
i¼0

ginifi; ð21Þ

by analogy with (4). The nine variables fi are thus decomposed into two scalars q and N, two vectors u and
J, and a symmetric second rank tensor P. Moreover, the lattice vectors appearing in (20), 1, ni, nini � hI,
gi, and gini, are all orthogonal with respect to the weighted inner product with weights wi [12]. The three

ghost vectors gi and gini thus extend the first three tensor Hermite polynomials, 1, ni, and nini � hI, to an

orthogonal basis for R9. The use of tensor Hermite polynomials is motivated by the work of He and Luo

[21] who derived the equilibria in (13), and the weights in (14), for the common isothermal lattice Boltz-

mann equation from the continuum Boltzmann equation via a truncated expansion in tensor Hermite

polynomials.

However, other choices are possible. Benzi et al. [3,4] used a different set of weights, in which the rest
particles associated with n0 had the same weight as the particles associated with the non-diagonal velocities

n1;2;3;4. Our N and J are analogous to the variables l and g used by Benzi et al. [3,4]. Lallemand and Luo

[25] used yet another set of variables, as introduced by d�Humi�eeres [13], based on lattice vectors that are

orthogonal with respect to the unweighted ‘2 inner product. The discrete equilibria happen to have the

elegant representation (20) in terms of tensor Hermite polynomials for the isothermal equation of state with

h ¼ 1=3 in lattice units; but for general equations of state [12], and especially for varying temperatures, the

discrete equilibria do not coincide with truncated expansions in tensor Hermite polynomials.

In terms of the variables in (20), the lattice Boltzmann equation (5) is equivalent to the coupled system

otqþr � ðquÞ ¼ 0; ð22aÞ
otðquÞ þ r �P ¼ 0; ð22bÞ
otPþr �
X8
i¼0

nininifi

 !
¼ � 1

sP
ðP�Pð0ÞÞ; ð22cÞ
otNþr �J ¼ � 1

sN
ðN�Nð0ÞÞ; ð22dÞ
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otJþr �
X8
i¼0

gininifi

 !
¼ � 1

sJ
ðJ�Jð0ÞÞ: ð22eÞ

No relaxation times appear in (22a) and (22b) because mass and momentum conservation imply that

qð0Þ ¼ q and uð0Þ ¼ u, so the first two right-hand sides always vanish. The remaining three relaxation times

sP, sN , and sJ may be adjusted independently.

The hydrodynamic variables q, u, P are coupled to the ghost variables N and J by the two terms

expressed as sums in (22c) and (22e). The combinations such as ginini may be expressed in terms of the nine
basis vectors as [12]

ginixnix ¼ 2ðniyniy � h1iÞ þ
2

3
gi; ginixniy ¼ 4nixniy; ð23aÞ
nixnixnix ¼ nix; nixnixniy ¼
1

3
niy þ

1

6
giniy; ð23bÞ

and their permutations in x and y. In particularJ appears in the non-equilibrium stress via (23b) and (22c),

for instance

X8
i¼0

nixnixniyfi ¼
X8
i¼0

1

3
niy

�
þ 1

6
giniy

�
fi ¼

1

3
uy þ

1

6
Jy : ð24Þ

The complete closed system of equations for q, u, P, N, and J may be found in [12].

Eq. (22c) for the symmetric stress tensor P may be further decomposed into separate equations for the

trace (which is a scalar) and the remaining traceless part. The relaxation time sb for the trace Pxx þPyy ofP
determines a bulk viscosity that may be different from the shear viscosity determined by the relaxation time ss
for the traceless part of P [11,14,25]. This decomposition of the nine fi into six quantities: three scalars, two
vectors, and a symmetric traceless rank 2 tensor is now irreducible, meaning that no further decomposition

would remain invariant under rotation of the coordinates. Thus, Xij, as determined by transforming Eqs.

(22a)–(22e) back to the fi variables, is determined uniquely by the four free parameters ss, sb, sN , and sJ .
4. Numerical implementation

The discrete Boltzmann equation (5) is usually implemented computationally as the fully discrete system,
or lattice Boltzmann equation

f iðxþ niDt; t þ DtÞ � f iðx; tÞ ¼ � DtX 1

�"
þ 1

2
DtX

��1
#
ij

ðf jðx; tÞ � f ð0Þ
j ðx; tÞÞ; ð25Þ

where the f i are defined by

f iðx; tÞ ¼ fiðx; tÞ þ
1

2
DtXijðfjðx; tÞ � f ð0Þ

j ðx; tÞÞ: ð26Þ

The term in square brackets in (25) should be interpreted as the components Cij of the fully discrete col-

lision matrix C ¼ DtXð1þ 1
2
DtXÞ�1

. In the BGK approximation with Xij ¼ s�1dij, (25) reduces to

f iðxþ niDt; t þ DtÞ � f iðx; tÞ ¼ � Dt
sþ Dt=2

ðf iðx; tÞ � f ð0Þ
i ðx; tÞÞ; ð27Þ
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which coincides with (2) above. The transformation from fi to f i in (26) then coincides with that introduced

by He et al. [19,22].

Eq. (25) and its BGK form (27) may be derived by integrating the discrete Boltzmann equation (5) along

a characteristic for time Dt. Approximating the integral of the collison term on the right-hand side using the

trapezium rule gives

fiðxþ niDt; t þ DtÞ � fiðx; tÞ ¼
1

2
DtXij½fjðxþ niDt; t þ DtÞ � f ð0Þ

j ðxþ niDt; t þ DtÞ þ fjðx; tÞ

� f ð0Þ
j ðx; tÞ� þOðDt3Þ: ð28Þ

This equation is not suitable as it stands for a timestepping scheme because the fi at time t þ Dt also appear

on the right-hand side; both explicitly, and implicitly through the dependence of f ð0Þ
j ðxþ niDt; t þ DtÞ on the

fi via q and u. However, Eq. (28) is algebraically identical to the fully explicit Eq. (25) under the change of

variables defined by (26). The solvability conditions (10) imply that the substitution (26) leaves the density

and momentum unchanged,

q ¼
Xn
i¼0

f i; qu ¼
Xn
i¼0

nif i; ð29Þ

so the f ð0Þ
i may be computed directly from the f i, making the fi redundant. In other words, the f i at time

t þ Dt are given explicitly in terms of quantities known at time t by Eq. (25), while the fi at time t þ Dt
would have to be found by solving the system (28) of algebraic Eqs. (19) and (22).

In the general case, the right-hand side of (25) would be evaluated by projecting onto the lattice vectors

associated with q, qu, P, N, and J as given in Section 9. These lattice eigenvectors define a basis in which

DtX and ð1þ 1
2
DtXÞ�1

are both diagonal, so the matrix Cij in (25) becomes simply Dt=ðsk þ 1
2
DtÞ multi-

plying each eigenvector k as in (27). For instance, a collision operator that changes only the relaxation time

sN for the ghost variable N may be implemented as

f iðxþ niDt; t þ DtÞ � f iðx; tÞ ¼ � Dt
sþ Dt=2

ðf iðx; tÞ � f ð0Þ
i ðx; tÞÞ � Dt

sN þ Dt=2

�
� Dt
sþ Dt=2

�
wigi

� 1

4

X8
j¼0

gjðf jðx; tÞ � f ð0Þ
j ðx; tÞÞ: ð30Þ

Since Nð0Þ ¼
P8

j¼0 gjf
ð0Þ
j ðx; tÞ ¼ 0 for the equilibria given above, it is only necessary to compute

N ¼
P8

j¼0 gjf jðx; tÞ. This would typically be implemented in the same loop that computes q and u from the

f j in order to evaluate the equilibria f ð0Þ
i .

4.1. Reducing round-off error

For small Mach numbers the density is almost uniform, q ¼ q0 þOðMa2Þ, and the macroscopic fluid

velocity is small, u ¼ OðMaÞ. The two sets of distribution functions appearing in (25) are therefore, both

almost equal to the rest state equilibria q0wi. In other words, f i ¼ q0wi þOðMaÞ and f ð0Þ
i ¼ q0wi þOðMaÞ,

so the difference f i � f ð0Þ
i is only OðMaÞ. The loss of numerical precision arising from computing the

difference between two nearly equal quantities may be reduced by analytically subtracting out the q0wi

contribution to f ð0Þ
i and f i, and evolving only the difference f i � q0wi, as proposed by Skordos [30]. The

macroscopic variables q and u may be reconstructed as

q ¼ q0 þ
Xn
i¼0

ðf i � q0wiÞ; qu ¼
Xn
i¼0

niðf i � q0wiÞ: ð31Þ
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Without this rearrangement, the convergence of the 2562 simulations shown in Fig. 4 was visibly affected by

numerical rounding error in IEEE 64 bit (16 digit) floating point arithmetic. The results presented below

were verified by comparisons between solutions obtained using different platforms and compilers, and with

a few solutions computed using IEEE 128 bit arithmetic.
5. Doubly periodic shear layers

Minion and Brown [28] studied the performance of various numerical schemes in under-resolved

simulations of the 2D incompressible Navier–Stokes equations. Their initial conditions corresponded to a

pair of perturbed shear layers,

ux ¼
tanhðjðy � 1=4ÞÞ; y6 1=2;

tanhðjð3=4� yÞÞ; y > 1=2;

�
uy ¼ d sinð2pðxþ 1=4ÞÞ;

ð32Þ

in the doubly periodic domain 06 x; y6 1. The parameter j controls the width of the shear layers, and d the
magnitude of the initial perturbation. The shear layers roll up due to a Kelvin–Helmholtz instability excited
by the OðdÞ perturbation in uy . The simulations presented below used j ¼ 20, d ¼ 0:05, and Reynolds

numbers of 1000 and 5000. Typical plots of the vorticity x ¼ oxuy � oyux for t ¼ 0:0 and t ¼ 1:0 are shown

in Fig. 3. All the vorticity fields shown in this paper were computed from the velocities ux and uy at lattice
points by spectrally accurate differentiation using the fast Fourier transform library FFTW [15]. These

comparatively thick shear layers show no sign of forming the spurious vortices found by Minion and

Brown [28] with j ¼ 80 on a 1282 grid at Re¼ 10,000.

Fig. 4 shows the ‘2 norm of the error in the vorticity, jjDxjj2, due to a finite Mach number for various

Mach numbers down to
ffiffiffi
3

p
=2000 � 8:6� 10�4. The comparison solution for the incompressible (Ma ! 0)

limit was obtained by Richardson extrapolation from solutions with Ma ¼
ffiffiffi
3

p
=2000 and Ma ¼

ffiffiffi
3

p
=4000

using the BGK collision operator, assuming an OðMa2Þ dependence of the error. This assumption is verified

by the Ma2 slope of the compressibility error shown in Fig. 4. Moreover, the contour plots of Dx in Fig. 5

show an essentially identical spatial pattern in the compressibility error at four different Mach numbers.

The compressibility error is largest where the streamlines are curved, so the centrifugal force must be

balanced by a pressure gradient, and vanishes in the middle of the shear layers where the streamlines are

nearly straight.
Fig. 3. Vorticity during the roll up of a perturbed doubly periodic shear layer. The left figure shows the initial conditions from (32),

while the right figure shows the rolled up shear layers at t ¼ 1. This solution was computed with the BGK collision operator for Mach

number Ma ¼
ffiffiffi
3

p
=2000 and Reynolds number Re ¼ 1000 on a 2562 lattice.



Fig. 4. Divergence of vorticity at t ¼ 1:0 as Ma ! 0 with the multiple relaxation time (MRT) collision operator. Results are shown for

Re ¼ 1000 on 642, 1282, and 2562 lattices. The difference Dx is between the solution for given Mach number and the incompressible

limit obtained from the BGK solution on each lattice by Richardson extrapolation. The compressibility error for the BGK solution

error decays as OðMa2Þ, with no visible difference between the three lattices. For the MRT collision operator, the error begins to

increase again for sufficiently small Mach numbers. For high resolutions the error diverges approximately as OðMa�1Þ.

Fig. 5. Convergence of vorticity at t ¼ 1:0 as Ma ! 0 with the BGK collision operator. The difference Dx between the solution for a

given Mach number and the incompressible limit, as obtained by Richardson extrapolation from solutions at the two Mach numbersffiffiffi
3

p
=2000 and

ffiffiffi
3

p
=4000, decays like OðMa2Þ as Ma ! 0. All computations were performed with Re ¼ 1000 on a 2562 lattice. Notice

that the spatial patterns are very similar in all four plots, although the amplitudes decrease proportionally to Ma2 as shown by the

labels on the color bars.
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The dotted lines in Fig. 4 show the results of computations with a multiple relaxation time (MRT)

collision operator. The relaxation time for the scalar ghost variable N was chosen to be sN ¼ 1
2
Dt, while all

other relaxation times were equal and determined by the viscosity. This value for sN gives the most rapid

decay of N towards zero in a spatially uniform state, as recommended by Higuera et al. [24] and Succi [32].

Lallemand and Luo [25] took sN slightly smaller than 1
2
Dt, so the decay rate cN ¼ Dt=ðsN þ Dt=2Þ is slightly

greater than one.

For this MRT collision operator, the vorticity on a fixed lattice at a fixed Reynolds number no longer

converges to an incompressible limit as the Mach number tends to zero. Instead, the error begins to increase
again for sufficiently small Mach numbers. The growth rate is approximately OðMa�1Þ, with the actual

exponent tending closer to �1 on finer lattices. Fig. 6 shows the error in vorticity at various Mach numbers

with the above MRT collision operator. For the largest Mach number shown, Ma ¼
ffiffiffi
3

p
=125 � 0:014, the

error looks very similar to the compressibility error with the BGK approximation as shown in Fig. 5. In

particular, the compressibility error in the vorticity is concentrated where the streamlines are curved, and

vanishes where they are straight. However, for smaller Mach numbers the error in the vorticity with the

MRT collision operator looks noticeably different. It is concentrated around the shear layers, where the

BGK compressibility error was small, and is small near the two vortices where the BGK compressibility
error was largest. The same behavior occurs with Re ¼ 5000, although the errors are systematically larger,

as shown in Fig. 7.
Fig. 6. Divergence of vorticity at t ¼ 1:0 as Ma ! 0 with the multiple relaxation time (MRT) collision operator. The difference Dx
between the solution for a given Mach number and the incompressible limit, as obtained by Richardson extrapolation from solutions

at the two Mach numbers
ffiffiffi
3

p
=2000 and

ffiffiffi
3

p
=4000, does not converge as Ma ! 0. All computations were performed with Re ¼ 1000 on

a 2562 lattice. For the largest Mach number, Dx resembles the spatial patterns in Fig. 5. For smaller Mach numbers (upper panels) the

pattern is distinctly different, with Dx largest around the shear layers, and the amplitude begins to increase again, as shown by the

labels on the color bars.



Fig. 7. Divergence of vorticity at t ¼ 1:0 as Ma ! 0 with the multiple relaxation time (MRT) collision operator. Results are shown for

Re ¼ 5000 on 642, 1282, and 2562 lattices. The errors are systematically larger than in Fig. 4, for Re ¼ 1000, which is plotted with the

same axes. As before, the difference Dx is between the solution for given Mach number and the incompressible limit obtained from the

BGK solution on each lattice by Richardson extrapolation. The compressibility error for the BGK solution error decays as OðMa2Þ,
with no visible difference between the three lattices. For the MRT collision operator, the error begins to increase again for sufficiently

small Mach numbers. For high resolutions the error diverges approximately as OðMa�1Þ.
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For the smallest Mach number shown, Ma ¼
ffiffiffi
3

p
=1000 � 0:0017, the greatest deviation of the density

from its mean value q0 ¼ 1 was 2� 10�6, and the maximum density deviation between the BGK and MRT

computations was even smaller, less than 2� 10�11. It is therefore, not surprising that the results of

computations using the pseudo-incompressible equilibria from (18) were visually indistinguishable from

those using the more common isothermal equilibria from (13). In particular, the pseudo-incompressible

computations suffered from the same divergence of the vorticity in the limit Ma ! 0.
6. Linear theory for an inclined jet

The previous computations become expensive in the small Mach number limit, because OðMa�1Þ
timesteps are required to reach a fixed multiple of an eddy turnover time. Fortunately, the observed di-

vergence at small Mach number also occurs in a linearized system, for which each timestep is equivalent to

a multiplication by a time-invariant matrix. Thus, the computation is equivalent to computing the OðMa�1Þ
power of a matrix, which may be achieved in Oðlog Ma�1Þ operations by successive squaring [17], or in

principle in Oð1Þ operations by diagonalising the matrix.

Moreover, the discrepancies visible in Fig. 6 around the almost straight shear layers suggest that a

unidirectional flow resembling Poiseuille flow may be sufficient. No unexpected behavior occurs unidi-

rectional flows aligned with the lattice, or aligned at 45� to the lattice. This is consistent with the dis-

crepancies plotted in Fig. 6, in which the error appears to vanish where the shear layer is nearly horizontal.

However, unidirectional flows inclined at other angles to the lattice, for instance with slope 1/2, do show

unexpected behavior. This dependence on inclination is due to the anisotropic coupling between the ghost
and hydrodynamic variables through (22c) and (22e).

We therefore, seek solutions of the form

fiðx; tÞ ¼ f ð0Þ
i þ hiðx� 2y; tÞ; ð33Þ

where f ð0Þ
i denotes a uniform rest state. For suitable values of the hi these solutions describe a small am-

plitude unidirectional jet, with a velocity of the form u ¼ ðx̂xþ 1
2
ŷyÞuðx� 2yÞ, inclined at an angle of



Fig. 8. Sketch of the inclined jet, the form of solution considered in (33), corresponding to unidirectional Poiseuille-type flow inclined

at an angle of tan�1ð1=2Þ � 27� to the horizontal axis.
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tan�1ð1=2Þ � 27� to the horizontal axis as sketched in Fig. 8. Here x̂x and ŷy are unit vectors in the x and y
directions. Incompressibility requires the flow to be invariant in the direction parallel to u, i.e. u � ru ¼ 0

as in Poiseuille flow, so u and the other variables should be functions of the perpendicular coordinate

f ¼ x� 2y only. The f axis is indicated by the pale gray line in Fig. 8.

Eq. (33) may be further simplified by assuming a sinusoidal spatial variation, so that

fiðx; tÞ ¼ f ð0Þ
i þ hiðtÞeikxðx�2yÞ; ð34Þ

where the hi are now functions of time only. The coordinates x and y should be restricted to integer

multiples of the lattice spacing, x ¼ IDx and y ¼ JDy. Substituting into the linearized fully discrete lattice

Boltzmann Eq. (25), we obtain a 9� 9 matrix equation for the hi,

hiðt þ DtÞ ¼ MijhjðtÞ; ð35Þ

where the matrix M with components Mij implicitly depends on s, and s in turn depends on the Mach

number. Suitable initial conditions for an inclined jet are

hið0Þ ¼ 3wiu � ni ¼ 3wi nix

�
þ 1

2
niy

�
; ð36Þ

with the fluid velocity u ¼ x̂xþ 1
2
ŷy being perpendicular to the direction of spatial variation, as sketched in

Fig. 8. We take the jet to be of unit wavelength in the x direction, so the x wavenumber kx ¼ 2p. If the jet is
allowed to decay viscously for unit time its velocity should decrease by a factor

expð�5k2x=ReÞ ¼ expð�20p2=ReÞ: ð37Þ

The factor of 5 in the exponent is due to the wavenumber in the y direction being ky ¼ 2kx, from the spatial

dependence in (33), so the modulus of the wave vector is jkj ¼
ffiffiffi
5

p
kx ¼ 2p

ffiffiffi
5

p
.

Translating into lattice units, the unit macroscopic wavelength in the x direction may be divided into N
lattice intervals of width Dx ¼ N�1. A particle traveling with unit lattice speed thus takes N timesteps to

cross the lattice, and a sound wave takes
ffiffiffi
3

p
N timesteps since h ¼ c2s ¼ 1=3 in lattice units. Thus, a unit

macroscopic time interval, defined as the time the fluid takes to travel a unit distance with unit macroscopic

speed, corresponds to
ffiffiffi
3

p
N=Ma timesteps.

Fig. 9 shows the fractional error in the jet speed, determined by projecting the hi after
ffiffiffi
3

p
N=Ma

timesteps onto the lattice vector nix þ 1
2
niy , relative to the exact formula (37), for various Mach numbers Ma

and numbers of lattice points N . For larger Mach numbers the error is proportional to N�2, consistent with



Fig. 9. Excessive decay of peak jet speed u at t ¼ 1:0 as Ma ! 0 with the multiple relaxation time (MRT) collision operator. Results

are shown for Re ¼ 2000 on lattices with 32, 64, 128, and 256 points. For moderate Mach numbers the error is OðN 2Þ, consistent with
second order spatial accuracy. For sufficiently small Mach numbers the relative error ðu0 � uÞ=u0 begins to diverge as OðMa�1Þ, until it
reaches a maximum of one when the jet speed has decayed to zero. By contrast, the errors in the BGK solutions (dots) all tend to OðN 2Þ
limits as Ma ! 0.
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the second order spatial accuracy of the scheme. This scaling is confirmed by replotting the data using the
variables N 2ðu0 � uÞ=u0 and N 3Ma in Fig. 10, for which the data collapse onto a single curve. However, for

sufficiently small Mach numbers the error begins to diverge in proportion to Ma�1 with the multiple re-

laxation time (MRT) collision operator. Again, we used sN ¼ 1=2 in lattice units, while sJ ¼ s ¼ffiffiffi
3

p
MaN=Re.

Figs. 9 and 10 both show data for the MRT collision operator where only sN ¼ 1=2 differs from the BGK

collision operator. Changing sJ to be the same as sN caused very little difference. Other values of sN and sJ
also give similar results. In fact, the behavior for varying sN may also be collapsed onto a single curve by

using N 3Ma=sN as the independent variable, instead of N 3Ma as in Fig. 10. The factor of N 3 implies that the
error at fixed Mach number is third order in space, consistent with the error being due to Burnett terms in

the Chapman–Enskog expansion [7,34].
Fig. 10. The above data may be collapsed using the variables N 2ðu0 � uÞ=u0 and N 3Ma. Results are shown for Re ¼ 2000 on lattices

with 32, 64, 128, and 256 points. The error increases proportional to Ma�1 as indicated by the sloping line.
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7. Eigenvalue problem for the inclined jet

The behavior of a fully discrete lattice Boltzmann equation such as (25) is more commonly analysed as

an eigenvalue problem [2,10,12,24–26,31], instead of as an initial value problem for specific initial condi-

tions as above. Assuming an exponential dependence in time for the hi with growth rate r, (35) becomes a

9� 9 matrix eigenvalue problem with eigenvalue k ¼ erDt,

erDthi ¼ Mijhj: ð38Þ

The constants hi are the eigenvector corresponding to the eigenvalue k. This eigenvalue problem is not

analytically tractable, involving the roots of a ninth degree polynomial that does not readily factorize, but

may be easily solved numerically by the QR iteration algorithm [1,17].

For the BGK collision operator, the eigenvalues k all tend to the unit circle as s ! 0 for fixed wave-

number k. In other words, jkj ¼ 1�OðsÞ, which implies 1� jkj ¼ OðMaÞ at fixed Reynolds number, since

s ¼
ffiffiffi
3

p
NMa=Re. The latter relation is plotted as the two straight lines in Fig. 11. Thus, the moduli of the

eigenvalues of the matrix Mð
ffiffi
3

p
N=MaÞ, arising from taking OðMa�1Þ timesteps to cover a unit macroscopic

time interval, tend to non-zero values in the Ma ! 0 limit. This result basically reflects the fact that, for any
constant s,

ð1� sMaÞð1=MaÞ ! e�s as Ma ! 0; ð39Þ

and the moduli of the eigenvalues of the matrix MðMaÞ are all asymptotically of the form jsj � 1� sMaþ
OðMa2Þ as Ma ! 0.

By contrast, the moduli of all but one of the eigenvalues of the MRT collision operator with fixed sN
and/or sJ tend to values strictly less than one in the s ! 0 limit, as shown by the dots in Fig. 11. The moduli
Fig. 11. The eigenvalues of the BGK collision operator (lines) convergence towards the unit circle (1� jkj ! 0) as Ma ! 0. The three

hydrodynamic eigenvalues associated with q and u coincide on the lower line, and the other six eigenvalues coincide on the upper line.

All but one of the eigenvalues of the MRT collision operator (plotted for sN ¼ Dt=2) tend to limits with moduli strictly less than one

(dots approaching the horizontal). The exception is the single eigenvalue computed in (40) that coincides with one eigenvalue of the

BGK collision operator (superimposed diagonal dots and lines).
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of the corresponding eigenvalues of the matrix Mð
ffiffi
3

p
N=MaÞ therefore, all tend to zero in the small Mach

number limit. The exception is the one MRT eigenvalue shown approaching the unit circle in Fig. 11. This

eigenvalue is given approximately (for sN ¼ 1=2 and sJ ¼ s) by

k ¼ �1þ sð4� 100k2x=57þOðk4xÞÞ þOðs2Þ; ð40Þ

where s ¼
ffiffiffi
3

p
NMa=Re is the collision time associated with the momentum flux P. The corresponding

eigenvalue of Mð
ffiffi
3

p
N=MaÞ therefore, has a modulus given approximately by

jkj ¼ 1

�
�

ffiffiffi
3

p
N
Ma

Re
4

�
� 100

57
k2x

��ð ffiffi3p
N=MaÞ

! exp
4N 2ð25k2 � 57Þ

19Re

� �
as Ma ! 0: ð41Þ

Substituting kx ¼ 2p=N into the above,

jkj ! exp
�228N 2 þ 400p2

19Re

� �
as Ma ! 0: ð42Þ

While this limit is not zero, it does become exponentially small as N is increased. Thus, the jet speeds plotted

in Fig. 9 do not quite tend to zero, because a finite fraction of the initial conditions project onto the ei-

genmode associated with the eigenvalue k above that does tend to a finite limit, but they do become ex-

ponentially small as the grid is refined (i.e. as N is increased). For N ¼ 64 and Re ¼ 2000 the limiting value

of the non-zero eigenvalue as Ma ! 0 is k � 2:4� 10�11.
Although the matrices M are all non-normal, meaning that MMT 6¼ MTM, none of the eigenvalues are

significantly ill-conditioned, in the sense that the cosines of the angles between left and right eigenvectors

are never close to zero [17]. Thus, no unusual behavior associated with ill-conditioned eigenvalues of non-

normal matrices occurs. Moreover, the eigenvalues are all distinct in the complex plane, although their

moduli often coincide, as in Fig. 11 where there are three distinct eigenvalues with one modulus (lower

diagonal line) for the BGK collision operator, and six distinct eigenvalues with a larger modulus (upper

diagonal line).
8. Introducing ghost Reynolds numbers

The convergence difficulties described above may be avoided by associating fixed ‘‘ghost Reynolds

numbers’’ RN and RJ with the non-hydrodynamic modes, and scaling the non-hydrodynamic relaxation

times sN ¼
ffiffiffi
3

p
NMa=RN and sJ ¼

ffiffiffi
3

p
NMa=RJ with the Mach number in the same way as the stress re-

laxation time. Solutions of the resulting lattice Boltzmann equation do then converge to an incompressible

limit as Ma ! 0. Moreover, the compressibility error for a given Mach number appears to be almost in-
dependent of RN and RJ , even when RN ¼ 1 and Re ¼ 1000, provided the compressibility error is measured

with respect to the incompressible limit computed with the same Re, RN , and RJ . In other words, the rate of

convergence to an incompressible limit is almost independent of the ghost Reynolds numbers, the data

collapsing onto single lines in the analogues of Figs. 4 and 7, but the limiting solutions themselves depend

on the ghost Reynolds numbers. These incompressible limiting solutions in turn converge to a universal

limit, the true solution for given Mach number and (hydrodynamic) Reynolds number that is independent

of RN and RJ , as the lattice is refined. This convergence is fourth order in space, as illustrated in Fig. 12. The

spatial convergence rate is one order higher than that shown in Fig. 10 for solutions with the unmodified
multiple relaxation time collision operators at fixed Mach number, due to the extra factor of N multiplying

the collision time in the formula sN ¼
ffiffiffi
3

p
NMa=RN . Returning to the numerical experiments illustrated in

Fig. 1, similar gains in stability to those achieved by setting sg ¼ Dt=2 may be obtained by setting RN ¼ 100,

while RJ ¼Re¼ 30,000.



Fig. 12. Vortex rollup solutions computed with Mach number Ma ¼
ffiffiffi
3

p
=1000, hydrodynamic Reynolds number Re ¼ 1000, and ghost

Reynolds number RN ¼ 1,10,100,500 all converge with fourth order accuracy towards the BGK solution (RN ¼ Re ¼ 1000) under

refinement of the lattice. The other ghost Reynolds number was held at RJ ¼ 1000.
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9. Conclusion

Most lattice Boltzmann equations contain more variables than are necessary to recover the Navier–
Stokes equations. These additional degrees of freedom appear as non-hydrodynamic or ‘‘ghost’’ variables.

The common BGK collision operator may be generalized so that relaxation times for the ghost variables

may be adjusted independently of the stress relaxation time that controls the viscosity. Since the ghost

variables do not appear in the Chapman–Enskog expansion at Navier–Stokes order, changing the ghost

variable relaxation times might be expected to leave the hydrodynamic variables unaffected.

However, on any finite lattice at a finite Reynolds number, there is a small but finite coupling between

the hydrodynamic and ghost variables, as expressed by the Burnett and higher order terms in the Chap-

man–Enskog expansion [7,34]. The strength of this coupling is set by the Knudsen numbers associated with
the various modes, and thus by the coefficients sP, sN , and sJ . For small Mach numbers, OðMa�1Þ timesteps

are needed to reach a given macroscopic time, for instance a fixed multiple of an eddy turnover time. The

timescale sP associated with the viscous stress is scaled to be OðMaÞ, and so correctly produces an Oð1Þ
effect after OðMa�1Þ timesteps. If the coefficients sN and sJ are not also scaled in proportion to the Mach

number, as proposed in Section 8, they may cause an OðMa�1Þ divergence of the hydrodynamic variables

away from the correct small Mach number limit though the accumulation of many numerically small, but

Mach number independent, errors.

The necessary scaling of the relaxation times with Mach number may be achieved by introducing ghost
Reynolds numbers as described in Section 8. Using ghost Reynolds numbers that are small compared with

the hydrodynamic Reynolds numbers, for instance Re¼ 30,000 and RN ¼ 100, to set the non-hydrodynamic

relaxation times yields significant stability advantages over simulations performed with the BGK collision

operator, without sacrificing the existence of an incompressible limit. Although many of the errors cal-

culated in this paper are still numerically small, this is only because the solutions contain many lattice

points across each feature. The errors become much larger for features close to the lattice scale, as in Fig. 7,

where the Knudsen numbers responsible for cross-coupling between hydrodynamic and ghost variables

become much larger.
Finally, the analysis and numerical experiments in this paper are based on the common two-dimensional

nine speed lattice, but the conclusions should hold for general lattices whenever there is some coupling

between hydrodynamic and ghost variables. In particular, the conclusions should hold for the larger lattices

that use two or more different speeds per direction to simulate fully thermal gas dynamics with a spatially
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varying temperature. The number of hydrodynamic variables increases in these thermal lattice Boltzmann

equations to include an independent heat flux vector, but the total number of variables usually increases

even more to ensure isotropy. There is therefore, additional scope for instabilities associated with the non-

hydrodynamic modes to limit the accessible range of Reynold numbers, which may explain why thermal

lattice Boltzmann equations have generally proved less successful than their isothermal predecessors [27].
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